4.7 Article

Universal Theoretical Approach to Extract Anisotropic Spin Hamiltonians

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 5, Issue 11, Pages 2977-2984

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct900326e

Keywords

-

Funding

  1. Spanish Ministry of Science and Innovation [CTQ2008-06644-C02-01]
  2. Generalitat de Catalunya [2009SGR462]
  3. French Centre National de la Recherche Scientifique (CNRS), Universite de Toulouse
  4. ICREA Funding Source: Custom

Ask authors/readers for more resources

Monometallic Ni(II) and Co(II) complexes with large magnetic anisotropy are studied using correlated wave function based ab initio calculations. Based on the effective Hamiltonian theory, we propose a scheme to extract both the parameters of the zero-field splitting (ZFS) tensor and the magnetic anisotropy axes. Contrarily to the usual theoretical procedure of extraction, the method presented here determines the sign and the magnitude of the ZFS parameters in any circumstances. While the energy levels provide enough information to extract the ZFS parameters in Ni(II) complexes, additional information contained in the wave functions must be used to extract the ZFS parameters of Co(II) complexes. The effective Hamiltonian procedure also enables us to confirm the validity of the standard model Hamiltonian to produce the magnetic anisotropy of monometallic complexes. The calculated ZFS parameters are in good agreement with high-field, high-frequency electron paramagnetic resonance spectroscopy and frequency domain magnetic resonance spectroscopy data. A methodological analysis of the results shows that the ligand-to-metal charge transfer configurations must be introduced in the reference space to obtain quantitative agreement with the experimental estimates of the ZFS parameters.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available