4.7 Review

All-electron scalar relativistic basis sets for third-row transition metal atoms

Journal

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
Volume 4, Issue 6, Pages 908-919

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ct800047t

Keywords

-

Ask authors/readers for more resources

A family of segmented all-electron relativistically contracted (SARC) basis sets for the elements Hf-Hg is constructed for use in conjunction with the Douglas-Kroll-Hess (DKH) and zeroth-order regular approximation (ZORA) scalar relativistic Hamiltonians. The SARC basis sets are loosely contracted and thus offer computational advantages compared to generally contracted relativistic basis sets, while their sufficiently small size allows them to be used in place of effective core potentials (ECPs) for routine studies of molecules. Practical assessments of the SARC basis sets in DFT calculations of atomic (ionization energies) as well as molecular properties (geometries and bond dissociation energies for MHn complexes) confirm that the basis sets yield accurate and reliable results, providing a balanced description of core and valence electron densities. CCSD(T) calculations on a series of gold diatomic compounds also demonstrate the applicability of the basis sets to correlated methods. The SARC basis sets will be of most utility in calculating molecular properties for which the core electrons cannot be neglected, such as studies of electron paramagnetic resonance, Mossbauer and X-ray absorption spectra, and topological analysis of electron densities.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available