4.5 Article

Treatment of laundry waste-water by electrocoagulation

Journal

JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY
Volume 86, Issue 8, Pages 1113-1120

Publisher

WILEY
DOI: 10.1002/jctb.2625

Keywords

electrocoagulation; laundry waste-water; aluminum plates; hydraulic retention time; adsorption kinetics

Ask authors/readers for more resources

BACKGROUND: The present study describes an electrocoagulation process for treating laundry waste-water using aluminum plates. The effect of various parameters such pH, voltage, hydraulic retention time (HRT), and number of aluminum plates between the anode and cathode on efficiency of treatment are investigated. RESULTS: Experimental results showed that by increasing HRT, treatment efficiency increases but beyond 45 min changes are negligible. Among the results for chemical oxygen demand (COD), phosphorus, detergent, colour and turbidity, the lowest decrease was found for phosphorus. The larger the HRT, the greater the electrical current needed to achieve constant voltage and temperature in the system. The pH of the influent is a very significant variable which affects the treatment of laundry waste-water considerably, the optimal range being 6.0-8.0. In addition, it was found that the pH increases from 8.3 to more than 10 over the first hour of treatment after which the pH remains relatively constant. Finally, kinetic analysis indicates that the adsorption system obeys a second-order kinetic model. CONCLUSION: The aluminum hydroxide generated in the cell decreases the concentration of pollutants in laundry waste-water to a permissible level. It is concluded that, compared with other treatment processes, electrocoagulation is more effective in treating laundry waste-water under appropriate conditions. (C) 2011 Society of Chemical Industry

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available