4.7 Article

New tools for the systematic analysis and visualization of electronic excitations. I. Formalism

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 141, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4885819

Keywords

-

Funding

  1. Alexander von Humboldt foundation

Ask authors/readers for more resources

A variety of density matrix based methods for the analysis and visualization of electronic excitations are discussed and their implementation within the framework of the algebraic diagrammatic construction of the polarization propagator is reported. Their mathematical expressions are given and an extensive phenomenological discussion is provided to aid the interpretation of the results. Starting from several standard procedures, e. g., population analysis, natural orbital decomposition, and density plotting, we proceed to more advanced concepts of natural transition orbitals and attachment/detachment densities. In addition, special focus is laid on information coded in the transition density matrix and its phenomenological analysis in terms of an electron-hole picture. Taking advantage of both the orbital and real space representations of the density matrices, the physical information in these analysis methods is outlined, and similarities and differences between the approaches are highlighted. Moreover, new analysis tools for excited states are introduced including state averaged natural transition orbitals, which give a compact description of a number of states simultaneously, and natural difference orbitals (defined as the eigenvectors of the difference density matrix), which reveal details about orbital relaxation effects. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available