4.7 Article

In silico studies of the properties of water hydrating a small protein

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 141, Issue 22, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4895533

Keywords

-

Funding

  1. Department of Science and Technology (DST), Government of India [SR/S1/PC-23/2007]
  2. DST-FIST programme [SR/FST/CSII-011/2005]
  3. CSIR, Government of India

Ask authors/readers for more resources

Atomistic molecular dynamics simulation of an aqueous solution of the small protein HP-36 has been carried out with explicit solvent at room temperature. Efforts have been made to explore the influence of the protein on the relative packing and ordering of water molecules around its secondary structures, namely, three a-helices. The calculations reveal that the inhomogeneous water ordering and density distributions around the helices are correlated with their relative hydrophobicity. Importantly, we have identified the existence of a narrow relatively dehydrated region containing randomly organized quasi-free water molecules beyond the first layer of bound waters at the protein surface. These water molecules with relatively weaker binding energies form the transition state separating the bound and free water molecules at the interface. Further, increased contribution of solid-like caging motions of water molecules around the protein is found to be responsible for reduced fluidity of the hydration layer. Interestingly, we notice that the hydration layer of helix-3 is more fluidic with relatively higher entropy as compared to the hydration layers of the other two helical segments. Such characteristics of helix-3 hydration layer correlate well with the activity of HP-36, as helix-3 contains the active site of the protein. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available