4.7 Article

Observation of the slow, Debye-like relaxation in hydrogen-bonded liquids by dynamic light scattering

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 140, Issue 10, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4867913

Keywords

-

Funding

  1. NSF Chemistry Program [CHE-1213444]
  2. Division Of Chemistry
  3. Direct For Mathematical & Physical Scien [1213444] Funding Source: National Science Foundation

Ask authors/readers for more resources

The slow, Debye-like relaxation in hydrogen-bonded liquids has largely remained a dielectric phenomenon and has thus far eluded observation by other experimental techniques. Here we report the first observation of a slow, Debye-like relaxation by both depolarized dynamic light scattering (DLS) and dielectric spectroscopy in a model hydrogen- bonded liquid, 2-ethyl-4-methylimidazole (2E4MIm). The relaxation times obtained by these two techniques are in good agreement and can be well explained by the Debye model of rotational diffusion. On the one hand, 2E4MIm is analogous to the widely studied monohydroxy alcohols in which transient chain-like supramolecular structure can be formed by hydrogen bonding. On the other hand, the hydrogen-bonded backbone of 2E4MIm is much more optically polarizable, making it possible to apply light scattering to study the dynamics of the supramolecular structure. These findings provide the missing evidence of the slow, Debye-like relaxation in DLS and open the venue for the application of dynamic light scattering to the study of supramolecular structures in hydrogen- bonded liquids. (c) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available