4.7 Article

Energy relaxation of a dissipative quantum oscillator

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 141, Issue 23, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4903809

Keywords

-

Funding

  1. Israeli Science Foundation
  2. German Israel Foundation for basic research
  3. Minerva Foundation, Munich
  4. Israel Council for Higher Education

Ask authors/readers for more resources

The dissipative harmonic oscillator is studied as a model for vibrational relaxation in a liquid environment. Continuum limit expressions are derived for the time-dependent average energy, average width of the population, and the vibrational population itself. The effect of the magnitude of the solute-solvent interaction, expressed in terms of a friction coefficient, solvent temperature, and initial energy of the oscillator on the relaxation has been studied. These results shed light on the recent femtosecond stimulated Raman scattering probe of the 1570 cm(-1) -C=C- stretching mode of trans-Stilbene in the first (S-1) excited electronic state. When the oscillator is initially cold with respect to the bath temperature, its average energy and width increase in time. When it is initially hot, the average energy and width decrease with time in qualitative agreement with the experimental observations. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available