4.7 Article

Computer simulation of epitaxial nucleation of a crystal on a crystalline surface

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 140, Issue 8, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4866035

Keywords

-

Funding

  1. EPSRC [EP/J006106/1]
  2. EPSRC [EP/J006106/1] Funding Source: UKRI
  3. Engineering and Physical Sciences Research Council [EP/J006106/1] Funding Source: researchfish

Ask authors/readers for more resources

We present results of computer simulations of crystal nucleation on a crystalline surface, in the Lennard-Jones model. Motivated by the pioneering work of Turnbull and Vonnegut [Ind. Eng. Chem. 44, 1292 (1952)], we investigate the effects of a mismatch between the surface lattice constant and that of the bulk nucleating crystal. We find that the nucleation rate is maximum close to, but not exactly at, zero mismatch. The offset is due to the finite size of the nucleus. In agreement with a number of experiments, we find that even for large mismatches of 10% or more, the formation of the crystal can be epitaxial, meaning that the crystals that nucleate have a fixed orientation with respect to the surface lattice. However, nucleation is not always epitaxial, and loss of epitaxy does affect how the rate varies with mismatch. The surface lattice strongly influences the nucleation rate. We show that the epitaxy observed in our simulations can be predicted using calculations of the potential energy between the surface and the first layer of the nucleating crystal, in the spirit of simple approaches such as that of Hillier and Ward [Phys. Rev. B 54, 14037 (1996)]. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available