4.7 Article

Asymptotic solutions of the Oosawa model for the length distribution of biofilaments

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 140, Issue 19, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4875897

Keywords

-

Funding

  1. St John's College, Cambridge
  2. Schiff Foundation
  3. Newman foundation

Ask authors/readers for more resources

Nucleated polymerisation phenomena are general linear growth processes that underlie the formation of a range of biofilaments in nature, including actin and tubulin that are key components of the cellular cytoskeleton. The conventional theoretical framework for describing this process is the Oosawa model that takes into account homogeneous nucleation coupled to linear growth. In his original work, Oosawa provided an analytical solution to the total mass concentration of filaments; the time evolution of the full length distribution has, however, been challenging to access, in large part due to the nonlinear nature of the rate equations inherent in the description of such phenomena and to date analytical solutions for the filament distribution are known only in certain special cases. Here, by exploiting a technique based on the method of matched asymptotics, we present an analytical treatment of the Oosawa model that describes the shape of the length distribution of biofilaments reversibly growing through primary nucleation and filament elongation. Our work highlights the power of matched asymptotics for obtaining closed-form analytical solutions to nonlinear master equations in biophysics and allows us to identify the key time scales that characterize biological polymerization processes. (C) 2014 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available