4.7 Article

Communication: The distinguishable cluster approximation

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 139, Issue 2, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.4813481

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft (DFG) [Ka 3326/1]

Ask authors/readers for more resources

We present a method that accurately describes strongly correlated states and captures dynamical correlation. It is derived as a modification of coupled-cluster theory with single and double excitations (CCSD) through consideration of particle distinguishability between dissociated fragments, whilst retaining the key desirable properties of particle-hole symmetry, size extensivity, invariance to rotations within the occupied and virtual spaces, and exactness for two-electron subsystems. The resulting method, called the distinguishable cluster approximation, smoothly dissociates difficult cases such as the nitrogen molecule, with the modest N-6 computational cost of CCSD. Even for molecules near their equilibrium geometries, the new model outperforms CCSD. It also accurately describes the massively correlated states encountered when dissociating hydrogen lattices, a proxy for the metal-insulator transition, and the fully dissociated system is treated exactly. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available