4.7 Article

Power functional theory for Brownian dynamics

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 138, Issue 21, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4807586

Keywords

-

Ask authors/readers for more resources

Classical density functional theory (DFT) provides an exact variational framework for determining the equilibrium properties of inhomogeneous fluids. We report a generalization of DFT to treat the non-equilibrium dynamics of classical many-body systems subject to Brownian dynamics. Our approach is based upon a dynamical functional consisting of reversible free energy changes and irreversible power dissipation. Minimization of this free power functional with respect to the microscopic one-body current yields a closed equation of motion. In the equilibrium limit the theory recovers the standard variational principle of DFT. The adiabatic dynamical density functional theory is obtained when approximating the power dissipation functional by that of an ideal gas. Approximations to the excess (over ideal) power dissipation yield numerically tractable equations of motion beyond the adiabatic approximation, opening the door to the systematic study of systems far from equilibrium. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available