4.7 Article

Polymer translocation dynamics in the quasi-static limit

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 138, Issue 17, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4803022

Keywords

-

Funding

  1. National Research Council of Canada (NSERC)

Ask authors/readers for more resources

Monte Carlo (MC) simulations are used to study the dynamics of polymer translocation through a nanopore in the limit where the translocation rate is sufficiently slow that the polymer maintains a state of conformational quasi-equilibrium. The system is modeled as a flexible hard-sphere chain that translocates through a cylindrical hole in a hard flat wall. In some calculations, the nanopore is connected at one end to a spherical cavity. Translocation times are measured directly using MC dynamics simulations. For sufficiently narrow pores, translocation is sufficiently slow that the mean translocation time scales with polymer length N according to proportional to (N - N-p)(2), where N-p is the average number of monomers in the nanopore; this scaling is an indication of a quasi-static regime in which polymer-nanopore friction dominates. We use a multiple-histogram method to calculate the variation of the free energy with Q, a coordinate used to quantify the degree of translocation. The free energy functions are used with the Fokker-Planck formalism to calculate translocation time distributions in the quasi-static regime. These calculations also require a friction coefficient, characterized by a quantity N-eff, the effective number of monomers whose dynamics are affected by the confinement of the nanopore. This was determined by fixing the mean of the theoretical distribution to that of the distribution obtained from MC dynamics simulations. The theoretical distributions are in excellent quantitative agreement with the distributions obtained directly by the MC dynamics simulations for physically meaningful values of N-eff. The free energy functions for narrow-pore systems exhibit oscillations with an amplitude that is sensitive to the nanopore length. Generally, larger oscillation amplitudes correspond to longer translocation times. (C) 2013 AIP Publishing LLC.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available