4.8 Article

Optogenetic Activation of Normalization in Alert Macaque Visual Cortex

Journal

NEURON
Volume 86, Issue 6, Pages 1504-1517

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2015.05.040

Keywords

-

Categories

Funding

  1. National Eye Institute [R01-EY021827, R21-EY020673, P30-EY-019005, R21 EY022853]
  2. Gatsby Charitable Foundation
  3. Salk Institute Excellerators Fellowship Program
  4. Swartz Foundation

Ask authors/readers for more resources

Normalization has been proposed as a canonical computation that accounts for a variety of nonlinear neuronal response properties associated with sensory processing and higher cognitive functions. A key premise of normalization is that the excitability of a neuron is inversely proportional to the overall activity level of the network. We tested this by optogenetically activating excitatory neurons in alert macaque primary visual cortex and measuring changes in neuronal activity as a function of stimulation intensity, with or without variable-contrast visual stimulation. Optogenetic depolarization of excitatory neurons either facilitated or suppressed baseline activity, consistent with indirect recruitment of inhibitory networks. As predicted by the normalization model, neurons exhibited sub-additive responses to optogenetic and visual stimulation, which depended lawfully on stimulation intensity and luminance contrast. We conclude that the normalization computation persists even under the artificial conditions of optogenetic stimulation, underscoring the canonical nature of this form of neural computation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available