4.8 Article

A Conserved Regulatory Logic Controls Temporal Identity in Mouse Neural Progenitors

Journal

NEURON
Volume 85, Issue 3, Pages 497-504

Publisher

CELL PRESS
DOI: 10.1016/j.neuron.2014.12.052

Keywords

-

Categories

Funding

  1. Foundation for Fighting Blindness Canada
  2. Canadian Institutes of Health Research [MOP-77570]
  3. CIHR

Ask authors/readers for more resources

Neural progenitors alter their output over time to generate different types of neurons and glia in specific chronological sequences, but this process remains poorly understood in vertebrates. Here we show that Casz1, the vertebrate ortholog of the Drosophila temporal identity factor castor, controls the production of mid-/late-born neurons in the murine retina. Casz1 is expressed from mid/late stages in retinal progenitor cells (RPCs), and conditional deletion of Casz1 increases production of early-born retinal neurons at the expense of later-born fates, whereas precocious misexpression of Casz1 has the opposite effect. In both cases, cell proliferation is unaffected, indicating that Casz1 does not control the timing of cell birth but instead biases RPC output directly. Just as Drosophila castor lies downstream of the early temporal identity factor hunchback, we find that the hunchback ortholog Ikzf1 represses Casz1. These results uncover a conserved strategy regulating temporal identity transitions from flies to mammals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available