4.7 Article

Molecular and electronic structure of electroactive self-assembled monolayers

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 138, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4795575

Keywords

-

Funding

  1. CONICET
  2. UBA
  3. AGENCIA
  4. ANPCYT

Ask authors/readers for more resources

Self-assembled monolayers (SAMs) containing electroactive functional groups are excellent model systems for the formation of electronic devices by self-assembly. In particular ferrocene-terminated alkanethiol SAMs have been extensively studied in the past. However, there are still open questions related with their electronic structure including the influence of the ferrocene group in the SAM-induced work function changes of the underlying metal. We have thus carried out a thorough experimental and theoretical investigation in order to determine the molecular and electronic structure of ferrocene-terminated alkanethiol SAMs on Au surfaces. In agreement with previous studies we found that the Fe-containing alkanethiol molecules adsorb forming a thiolate bond with the Au surface with a molecular geometry 30 degrees tilted with respect to the surface normal. Measured surface coverages indicate the formation of a compact monolayer. We found for the first time that the ferrocene group has little influence on the observed work function decrease which is largely determined by the alkanethiol. Furthermore, the ferrocene moiety lies 14 angstrom above the metal surface covalently bonded to the alkanethiol SAM and its HOMO is located at -1.6 eV below the Fermi level. Our results provide new valuable insight into the molecular and electronic structure of electroactive SAMs which are of fundamental importance in the field of molecular electronics. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795575]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available