4.7 Article

Reaction dynamics with the multi-layer multi-configurational time-dependent Hartree approach: H + CH4 → H2 + CH3 rate constants for different potentials

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 137, Issue 24, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.4772585

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft

Ask authors/readers for more resources

The multi-layer extension of the multi-configurational time-dependent Hartree (MCTDH) approach is applied to the investigation of elementary bimolecular chemical reactions. Cumulative reaction probabilities and thermal rate constants of the H + CH4 -> H-2 + CH3 reaction are calculated using flux correlation functions and the quantum transition state concept. Different coordinate systems and potential energy surfaces (PESs) are studied. The convergence properties of different layerings are investigated and the efficiency of multi-layer MCTDH approach is compared to the standard MCTDH approach. It is found that the multi-layer approach can decrease the numerical effort by more than an order of magnitude. The increased efficiency resulting from the multi-layer MCTDH approach is crucial for quantum dynamical calculations on recent global H + CH4 -> H-2 + CH3 PESs, e. g., the ZBB3-PES [Z. Xie, J. M. Bowman, and X. Zhang, J. Chem. Phys. 125, 133120 (2006)] based on permutational invariant polynomials, which are numerically more demanding than earlier PESs. The results indicate that an accurate description of all transition state frequencies is important to obtain accurate thermal rate constants. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772585]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available