4.7 Article

Potential and flux decomposition for dynamical systems and non-equilibrium thermodynamics: Curvature, gauge field, and generalized fluctuation-dissipation theorem

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 135, Issue 23, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3669448

Keywords

-

Funding

  1. Emerging Frontiers
  2. Direct For Biological Sciences [0926287] Funding Source: National Science Foundation

Ask authors/readers for more resources

The driving force of the dynamical system can be decomposed into the gradient of a potential landscape and curl flux (current). The fluctuation-dissipation theorem (FDT) is often applied to near equilibrium systems with detailed balance. The response due to a small perturbation can be expressed by a spontaneous fluctuation. For non-equilibrium systems, we derived a generalized FDT that the response function is composed of two parts: (1) a spontaneous correlation representing the relaxation which is present in the near equilibrium systems with detailed balance and (2) a correlation related to the persistence of the curl flux in steady state, which is also in part linked to a internal curvature of a gauge field. The generalized FDT is also related to the fluctuation theorem. In the equal time limit, the generalized FDT naturally leads to non-equilibrium thermodynamics where the entropy production rate can be decomposed into spontaneous relaxation driven by gradient force and house keeping contribution driven by the non-zero flux that sustains the non-equilibrium environment and breaks the detailed balance. On any particular path, the medium heat dissipation due to the non-zero curl flux is analogous to the Wilson lines of an Abelian gauge theory. (C) 2011 American Institute of Physics. [doi:10.1063/1.3669448]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available