4.7 Article

Accurate ab initio quartic force fields of cyclic and bent HC2N isomers

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 135, Issue 24, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3671389

Keywords

-

Funding

  1. NASA [08-APRA08-0050, 10-APRA10-0096]
  2. NASA/SETI Institute [NNX09AI49A]
  3. Fondecyt [3110007]
  4. NASA Ames Research Center

Ask authors/readers for more resources

Highly correlated ab initio quartic force fields (QFFs) are used to calculate the equilibrium structures and predict the spectroscopic parameters of three HC2N isomers. Specifically, the ground state quasilinear triplet and the lowest cyclic and bent singlet isomers are included in the present study. Extensive treatment of correlation effects were included using the singles and doubles coupled-cluster method that includes a perturbational estimate of the effects of connected triple excitations, denoted as CCSD(T). Dunning's correlation-consistent basis sets cc-pVXZ, X = 3,4,5, were used, and a three-point formula for extrapolation to the one-particle basis set limit was used. Core-correlation and scalar relativistic corrections were also included to yield highly accurate QFFs. The QFFs were used together with second-order perturbation theory (PT) (with proper treatment of Fermi resonances) and variational methods to solve the nuclear Schrodinger equation. The quasilinear nature of the triplet isomer is problematic, and it is concluded that a QFF is not adequate to describe properly all of the fundamental vibrational frequencies and spectroscopic constants (though some constants not dependent on the bending motion are well reproduced by PT). On the other hand, this procedure (a QFF together with either PT or variational methods) leads to highly accurate fundamental vibrational frequencies and spectroscopic constants for the cyclic and bent singlet isomers of HC2N. All three isomers possess significant dipole moments, 3.05 D, 3.06 D, and 1.71 D, for the quasilinear triplet, the cyclic singlet, and the bent singlet isomers, respectively. It is concluded that the spectroscopic constants determined for the cyclic and bent singlet isomers are the most accurate available, and it is hoped that these will be useful in the interpretation of high-resolution astronomical observations or laboratory experiments. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671389]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available