4.7 Article

Kinetics and dynamics of the NH3 + H → NH2 + H2 reaction using transition state methods, quasi-classical trajectories, and quantum-mechanical scattering

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 135, Issue 1, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3605242

Keywords

-

Funding

  1. Junta de Extremadura, Spain [IB10001]
  2. National Science Foundation of China [20921004, 21073229, 20833007]

Ask authors/readers for more resources

On a recent analytical potential energy surface developed by two of the authors, an exhaustive kinetics study, using variational transition state theory with multidimensional tunneling effect, and dynamics study, using both quasi-classical trajectory and full-dimensional quantum scattering methods, was carried out to understand the reactivity of the NH3 + H -> NH2 + H-2 gas-phase reaction. Initial state-selected time-dependent wave packet calculations using a full-dimensional model were performed, where the total reaction probabilities were calculated for the initial ground vibrational state and for four excited vibrational states of ammonia. Thermal rate constants were calculated for the temperature range 200-2000 K using the three methods and compared with available experimental data. We found that (a) the total reaction probabilities are very small, (b) the symmetric and asymmetric N-H stretch excitations enhance the reactivity, (c) the quantum-mechanical calculated thermal rate constants are about one order of magnitude smaller than the transition state theory results, which reproduce the experimental evidence, and (d) quasi-classical trajectory calculations, which were performed with the main goal of analyzing the influence of the zero-point energy problem on the final dynamics results, reproduce the quantum scattering calculations on the same surface. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3605242]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available