4.7 Article

Proton transfer reactions in nanoscopic polar domains: 3-hydroxyflavone in AOT reverse micelles

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 132, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3272526

Keywords

chemical exchanges; colloids; excited states; hydrogen bonds; nanostructured materials; organic compounds; reaction kinetics; solvation; solvent effects; water

Funding

  1. University Grants Commission (UGC), India
  2. Council of Scientific and Industrial Research (CSIR), India

Ask authors/readers for more resources

A dramatic reduction in the excited-state intramolecular proton transfer (ESIPT) rate is observed for 3-hydroxyflavone (3-HF) within the nanoscopic polar domains of Aerosol-OT (AOT)/n-heptane reverse micelle solutions. It is attributed to the formation of intermolecularly hydrogen-bonded 3-HF:AOT complexes, which cause a significant disruption of intramolecular hydrogen bonding within the complex-bound 3-HF molecules, thereby limiting the overall rate of the ESIPT process. Introduction of strong hydrogen-bonding polar solvents like water or methanol into the reverse micelles causes extensive solvation of the AOT head groups, leading to the collapse of the 3-HF:AOT complex and eventual release of intramolecularly hydrogen-bonded 3-HF molecules which are then able to undergo ultrafast ESIPT. With increasing W-value (W=[polar solvent]:[AOT]), a larger number of 3-HF:AOT complexes are decimated, thus accelerating the overall ESIPT process. In contrast, in presence of solvents like acetonitrile, whose hydrogen-bonding power is inherently weak, the AOT head groups are poorly solvated, so that the 3-HF:AOT complexes are hardly affected at any W-value. Consequently the ESIPT dynamics of 3-HF in acetonitrile-containing AOT reverse micelles is nearly independent of the W-value, and always slower compared to that in water- or methanol-containing AOT reverse micelles. The results highlight the importance of hydrogen-bonding property of the polar solvent on the ESIPT of 3-HF within a nanoscopic domain.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available