4.7 Article

Logarithm second-order many-body perturbation method for extended systems

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 133, Issue 3, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3455717

Keywords

-

Funding

  1. U.S. National Science Foundation [CHE-0844448]
  2. U.S. Department of Energy [DE-FG02-04ER15621]
  3. American Chemical Society Petroleum Research Fund [48440-AC6]

Ask authors/readers for more resources

We propose progressive downsampling of wave vectors in the Brillouin zone integrations occurring in the second-order many-body or Moller-Plesset perturbation (MP2) method for extended systems of one-dimensional periodicity. Higher-lying unoccupied and lower-lying occupied Bloch orbitals are subject to downsampling by an exponentially increasing factor (with base n), making the total number of Bloch orbitals included in the MP2 lattice sums grow only logarithmically with respect to the number of basis functions per unit cell. Unlike the mod n downsampling scheme proposed earlier, this log n scheme reduces the scaling of the computational cost and thus achieves a greater speedup as the unit cell size increases. Correct band indexing is essential for accuracy. Two-electron integrals entering the MP2 energy and quasiparticle energy expressions must be multiplied by quadrature weights that are a function of the energy bands involved, and an algorithm to compute the weights is proposed. A combined use of the log n and mod a schemes can speedup the MP2/6-31G** calculation of polyacetylene typically by a factor of 20 with an error in the correlation energy within a few percent relative to the conventional calculation. Similar combinations can reproduce the MP2 quasiparticle energy bands accurately at a fraction of the usual computational cost. (C) 2010 American Institute of Physics. [doi:10.1063/1.3455717]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available