4.7 Article

Increasing correlation length in bulk supercooled H2O, D2O, and NaCl solution determined from small angle x-ray scattering

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 133, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3495974

Keywords

-

Funding

  1. National Science Foundation (U.S.) [CHE-0809324]
  2. Basic Energy Sciences (BES) through the Stanford Synchrotron Radiation Lightsource (SSRL)
  3. Swedish Research Council
  4. National Institutes of Health, National Center for Research Resources, Biomedical Technology
  5. U.S. Department of Energy, Office of Biological and Environmental Research
  6. Division Of Chemistry
  7. Direct For Mathematical & Physical Scien [0809324] Funding Source: National Science Foundation

Ask authors/readers for more resources

Using small angle x-ray scattering, we find that the correlation length of bulk liquid water shows a steep increase as temperature decreases at subzero temperatures (supercooling) and that it can, similar to the thermodynamic response functions, be fitted to a power law. This indicates that the anomalous properties of water are attributable to fluctuations between low-and high-density regions with rapidly growing average size upon supercooling. The substitution of H2O with D2O, as well as the addition of NaCl salt, leads to substantial changes of the power law behavior of the correlation length. Our results are consistent with the proposed existence of a liquid-liquid critical point in the deeply supercooled region but do not exclude a singularity-free model. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3495974]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available