4.7 Article

Sulfoxide stretching mode as a structural reporter via dual-frequency two-dimensional infrared spectroscopy

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 133, Issue 14, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.3482708

Keywords

-

Funding

  1. National Science Foundation [CHE-0750415, CHE-0936133, CHE-0809669]
  2. Louisiana Board of Regents RCS
  3. Tulane University
  4. NDSEG

Ask authors/readers for more resources

The S=O stretching mode in sulfoxides, having a frequency in the 950-1150 cm(-1) range, is tested as a structural label via dual-frequency two-dimensional infrared (2DIR) spectroscopy. The properties of this structural reporter are studied in several compounds, including (4,4'-dimethyl-2,2'-bipyridyl)(o-methylsulfinylbenzoate) ruthenium II, [Ru(dmb)(2)(BzSO)](+), (RuBzSO), octylsulfinylpropionic acid (OSPA), and o- and p-methylsulfinyl-benzoic acid (oMSBA and pMSBA). The mode assignment in the fingerprint region for these compounds is made using a combination of density functional theory calculations and 2DIR and relaxation-assisted 2DIR (RA 2DIR) spectroscopies. The SO stretching mode frequency and IR intensity demonstrate substantial sensitivity to the molecular structure. Multiple cross peaks of the C=O and S=O stretching modes with modes in the fingerprint region (930-1450 cm(-1)) were recorded. The 2DIR and RA 2DIR spectra focusing at interactions of a high-frequency mode of a ligand with the modes in the fingerprint region provide a spectral fingerprint of a compound and help mode assignment in the often congested fingerprint region. The cross-peak amplitudes in oMSBA, pMSBA, and OSPA were compared with the theoretical predictions based on the computed values for the off-diagonal anharmonicities and a reasonable match is found. The SO stretching mode provides means for assigning other modes in the fingerprint region and constitutes a promising structural reporter for the 2DIR and RA 2DIR spectroscopy measurements. (C) 2010 American Institute of Physics. [doi:10.1063/1.3482708]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available