4.7 Article

A new electron-methanol molecule pseudopotential and its application for the solvated electron in methanol

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 132, Issue 15, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3385798

Keywords

eigenvalues and eigenfunctions; ground states; molecular dynamics method; organic compounds; potential energy surfaces; pseudopotential methods; quantum theory; solvated electrons

Funding

  1. National Research Fund of Hungary (OTKA) [K75285]

Ask authors/readers for more resources

A new electron-methanol molecule pseudopotential is developed and tested in the present paper. The formal development of the potential is based on quantum mechanical calculations on the electron-methanol molecule model in the static exchange approximation. The computational model includes a steep confining potential that keeps the otherwise unbound excess electron in the vicinity of the methanol molecule. Using the Phillips-Kleinman theorem we introduce a smooth pseudowave function of the excess electron with the exact eigenenergy and correct asymptotic behavior. The nonlocal potential energy operator of the model Hamiltonian is then replaced to a local potential that reproduces the ground-state properties of the excess electron satisfactorily. The pseudopotential is then optimized in an analytically simple functional form to fit this approximate local potential in conjunction with the point charges and the geometry of a classical, all-site methanol-methanol interaction potential. Of the adjustable parameters, the parameters for the carbon and the methyl hydrogen atoms are optimized, while those for the oxygen and the hydroxyl hydrogen are taken from a previous electron-water molecule pseudopotential. A polarization term is added to the potential a posteriori. The polarization parameters are chosen to reproduce the experimental position of the optical absorption spectrum of an excess electron in mixed quantum-classical molecular dynamics simulations. The energetic, structural and spectroscopic properties of the solvated electron in a methanol bath are simulated at 300 K and compared with previous solvated electron simulations and available experimental data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available