4.7 Article

Charge transfer rates in organic semiconductors beyond first-order perturbation: From weak to strong coupling regimes

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 130, Issue 2, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3055519

Keywords

charge exchange; hole mobility; organic semiconductors

Funding

  1. Ministry of Science and Technology of China [2006CB806200, 2006CB0N0100, 2009CB623600]
  2. NSFC [20833004]

Ask authors/readers for more resources

Semiclassical Marcus electron transfer theory is often employed to investigate the charge transport properties of organic semiconductors. However, quite often the electronic couplings vary several orders of magnitude in organic crystals, which goes beyond the application scope of semiclassical Marcus theory with the first-order perturbative nature. In this work, we employ a generalized nonadiabatic transition state theory (GNTST) [Zhao , J. Phys. Chem. A 110, 8204 (2004)], which can evaluate the charge transfer rates from weak to strong couplings, to study charge transport properties in prototypical organic semiconductors: quaterthiophene and sexithiophene single crystals. By comparing with GNTST results, we find that the semiclassical Marcus theory is valid for the case of the coupling < 10 meV for quaterthiophene and < 5 meV for sexithiophene. It is shown that the present approach can be applied to design organic semiconductors with general electronic coupling terms. Taking oligothiophenes as examples, we find that our GNTST-calculated hole mobility is about three times as large as that from the semiclassical Marcus theory. The difference arises from the quantum nuclear tunneling and the nonperturbative effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available