4.7 Article

Accurate ab initio energy gradients in chemical compound space

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 131, Issue 16, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3249969

Keywords

-

Funding

  1. U. S. Department of Energy National Nuclear Security Administration [DE-AC04-94AL85000]

Ask authors/readers for more resources

Analytical potential energy derivatives, based on the Hellmann-Feynman theorem, are presented for any pair of isoelectronic compounds. Since energies are not necessarily monotonic functions between compounds, these derivatives can fail to predict the right trends of the effect of alchemical mutation. However, quantitative estimates without additional self-consistency calculations can be made when the Hellmann-Feynman derivative is multiplied with a linearization coefficient that is obtained from a reference pair of compounds. These results suggest that accurate predictions can be made regarding any molecule's energetic properties as long as energies and gradients of three other molecules have been provided. The linearization coefficent can be interpreted as a quantitative measure of chemical similarity. Presented numerical evidence includes predictions of electronic eigenvalues of saturated and aromatic molecular hydrocarbons. (C) 2009 American Institute of Physics. [doi:10.1063/1.3249969]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available