4.7 Article

Temperature dependence of solvation forces as measured in atomic force microscopy

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 130, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3096967

Keywords

atomic force microscopy; graphite; interface phenomena; liquid theory; organic compounds; solvation; surface chemistry

Ask authors/readers for more resources

An atomic force microscope (AFM) has been used to study the effect of temperature on solvation forces in the liquids octamethylcyclotetrasiloxane, n-hexadecane, and n-dodecanol confined between the AFM tip and a graphite surface. Discrete solvation layers can be observed for all three liquids at all the temperatures measured (298-348K). However, with increasing temperature there is a significant decrease in the magnitude of the measured solvation forces and a reduction in the number of solvation oscillations which can be observed. Solvation forces per se are only weakly temperature dependent and the most plausible explanation is that we are measuring how the layers are squeezed from the tip-sample gap. The squeeze out process is a thermally activated phenomenon and gives rise to the large change in the magnitude of the force oscillations with temperature. A simple analysis is provided based on transition rate theory. The large change in solvation force with temperature has implications for the measurement of localized forces using AFM, particularly in interpreting biological interactions and single asperity friction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available