4.7 Article

X-ray absorption spectroscopy of biomimetic dye molecules for solar cells

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 131, Issue 19, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3257621

Keywords

biomimetics; dyes; molecular electronic states; oxidation; solar cells; XANES

Funding

  1. NSF [DMR-0520527, DMR-008440]
  2. DOE [DE-FG02-01ER45917, DE-AC03-76SF00098]

Ask authors/readers for more resources

Dye-sensitized solar cells are potentially inexpensive alternatives to traditional semiconductor solar cells. In order to optimize dyes for solar cells we systematically investigate the electronic structure of a variety of porphyrins and phthalocyanines. As a biological model system we use the heme group in cytochrome c which plays a role in biological charge transfer processes. X-ray absorption spectroscopy of the N 1s and C 1s edges reveals the unoccupied molecular orbitals and the orientation of the molecules in thin films. The transition metal 2p edges reflect the oxidation state of the central metal atom, its spin state, and the ligand field of the surrounding N atoms. The latter allows tuning of the energy position of the lowest unoccupied orbital by several tenths of an eV by tailoring the molecules and their deposition. Fe and Mn containing phthalocyanines oxidize easily from +2 to +3 in air and require vacuum deposition for obtaining a reproducible oxidation state. Chlorinated porphyrins, on the other hand, are reduced from +3 to +2 during vacuum deposition at elevated temperatures. These findings stress the importance of controlled thin film deposition for obtaining photovoltaic devices with an optimum match between the energy levels of the dye and those of the donor and acceptor electrodes, together with a molecular orientation for optimal overlap between the pi orbitals in the direction of the carrier transport.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available