4.7 Article

Structures of MoxW(3-x)O6 (x=0-3) anion and neutral clusters determined by anion photoelectron spectroscopy and density functional theory calculations

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 131, Issue 4, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3180825

Keywords

-

Funding

  1. National Science Foundation [CHE-0718387]

Ask authors/readers for more resources

The structures of Mo3O6, Mo2WO6, MoW2O6, and W3O6 and their associated anions were studied using a combination of anion photoelectron (PE) spectroscopy and density functional theory calculations. The 3.49 eV photon energy anion PE spectra of all four species showed broad electronic bands with origins near 2.8 eV. Calculations predict that low-spin, cyclic structures are the lowest energy isomers for both the anion and neutral species. The lowest energy neutral structures for all four species are analogous, C-3v (Mo3O6 and W3O6) or C-s (mixed clusters) symmetry structures in which all three metal atoms are in formally equivalent oxidation states, with singlet ground electronic states. The lowest energy isomers predicted for Mo3O6- and W3O6- are the same with doublet electronic states. The lowest energy structures calculated for the mixed anions are lower symmetry, with the tungsten centers in higher oxidation states than the molybdenum centers. However, C-s symmetry structures are competitive, and appear to be the primary contributors to the observed spectra. Spectral simulations based on calculated spectroscopic parameters validate the assignments. This series of clusters is strikingly different from the Mo2O4/MoWO4/W2O4 anion and neutral series described recently [Mayhall et al., J. Chem. Phys. 130, 124313 (2009)]. While the average oxidation state is the same for both series, the structures determined for the Mo2O4/MoWO4/W2O4 anions and neutrals were dissimilar and lower symmetry, and high spin states were energetically favored. This difference is attributed to the large stabilizing effect of electronic delocalization in the more symmetric trimetallic cyclic structures that is not available in the bimetallic species. (C) 2009 American Institute of Physics. [DOI:10.1063/1.3180825]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available