4.7 Article

Comparison of a hydrogel model to the Poisson-Boltzmann cell model

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 131, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3207275

Keywords

colloids; fluctuations; hydrogels; liquid theory; molecular dynamics method; osmosis

Funding

  1. DFG [SPP 1259]

Ask authors/readers for more resources

We have investigated a single charged microgel in aqueous solution with a combined simulational model and Poisson-Boltzmann theory. In the simulations we use a coarse-grained charged bead-spring model in a dielectric continuum, with explicit counterions and full electrostatic interactions under periodic and nonperiodic boundary conditions. The Poisson-Boltzmann hydrogel model is that of a single charged colloid confined to a spherical cell where the counterions are allowed to enter the uniformly charged sphere. In order to investigate the origin of the differences these two models may give, we performed a variety of simulations of different hydrogel models which were designed to test for the influence of charge correlations, excluded volume interactions, arrangement of charges along the polymer chains, and thermal fluctuations in the chains of the gel. These intermediate models systematically allow us to connect the Poisson-Boltzmann cell model to the bead-spring model hydrogel model in a stepwise manner thereby testing various approximations. Overall, the simulational results of all these hydrogel models are in good agreement, especially for the number of confined counterions within the gel. Our results support the applicability of the Poisson-Boltzmann cell model to study ionic properties of hydrogels under dilute conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available