4.7 Article

Conduction in graphenes

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 131, Issue 24, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.3272669

Keywords

ballistic transport; Fermi level; graphene; orbital calculations; tight-binding calculations

Funding

  1. Royal Society/Wolfson scheme for a Research Merit
  2. University of Sheffield
  3. NSERC

Ask authors/readers for more resources

It is shown that, within the tight-binding approximation, Fermi-level ballistic conduction for a perimeter-connected graphene fragment follows a simple selection rule: the zero eigenvalues of the molecular graph and of its subgraph minus both contact vertices must be equal in number, as must those of the two subgraphs with single contact vertices deleted. In chemical terms, the new rule therefore involves counting nonbonding orbitals of four molecules. The rule is initially derived within the source and sink potential scattering framework, but has equivalent forms that unify the molecular-orbital and valence-bond approaches to conduction. It is shown that the new selection rule can be cast in terms of Kekuleacute counts, bond orders, and frontier-orbital coefficients. In particular, for a Kekulean graphene, conduction pathways are shown to be ranked in efficiency by a (nonmonotonic) function of Pauling bond order between the contact vertices. Frontier-orbital analysis of conduction approximates this function. For a monoradical graphene, the analogous function is shown to depend on Pauling spin densities at contact vertices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available