4.7 Article

Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 129, Issue 5, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2963502

Keywords

-

Ask authors/readers for more resources

We use amplified spontaneous emission (ASE) and linear absorption spectroscopy to study the mechanisms of reversible photodegradation of 1-amino-2-methylanthraquinone (disperse orange 11-DO11) in solid poly(methyl methacrylate). Measurements as a function of intensity, concentration, and time suggest that ASE originates in a state (be it a tautomer or a vibronic level) that can form a dimer or some other aggregate upon relaxation, which through fluorescence quenching leads to degradation of the ASE signal. Whatever the degradation route, a high concentration of DO11 is required and the polymer plays a key role in the process of opening a new reversible degradation pathway that is not available at lower concentrations or in liquid solutions. We construct an energy level diagram that describes all measured quantities in the decay and recovery processes and propose a hypothesis of the nature of the associated states. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available