4.7 Article

Femtosecond midinfrared study of the photoinduced Wolff rearrangement of diazonaphthoquinone

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 129, Issue 9, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2971037

Keywords

-

Ask authors/readers for more resources

Time-resolved vibrational femtosecond spectroscopy is employed to investigate the photoinduced Wolff rearrangement reaction of diazonaphthoquinone (DNQ) dissolved in different solvents (methanol and water). DNQ is an important compound in commercial Novolak photoresists. Upon photoexcitation the ketene intermediate appears within 300 fs, indicating that the ketene is formed in a very fast concerted process involving N(2) loss and rearrangement. The strong shift of the vibrational band, assigned to the ketene by density functional theory calculations and experimental infrared spectra, toward higher wavenumbers is attributed to vibrational cooling. The relaxation time depends on the solvent (10 ps in methanol and 3 ps in water). However, the spectroscopic data show that the indirect ketene formation via a carbene intermediate might also be involved in the reaction process contributing to the ketene formation on the 10 ps time scale. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available