4.7 Article

Rigidity effect on phase behavior of symmetric ABA triblock copolymers:: A Monte Carlo simulation

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 129, Issue 5, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2957463

Keywords

-

Ask authors/readers for more resources

The phase behavior of symmetric ABA triblock copolymers containing a semiflexible midblock is studied by lattice Monte Carlo simulation. As the midblock evolves from a fully flexible state to a semiflexible state in terms of increase in its persistence length, different phase behaviors are observed while cooling the system from an infinite high temperature to a temperature below T-ODT (order-disorder transition temperature). Within the midblock flexibility range we studied (l(p)/N-c <= 0.105), a lamellar structure is formed at equilibrium state as the situation for fully flexible chains. The fraction of bridge chain is evaluated for the lamellar structures. We find that the increase in midblock rigidity indeed results in the increase in bridge chain fraction within the range from 44.9% to 51.8%. In order to elucidate phase behavior evolution observed in our simulation, a detailed conformation distribution analysis is also given. Our results bridge a gap of different phase behaviors between rod-coil block copolymer and coil-coil block copolymer and show a necessity to investigate rigidity influence on phase diagram. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available