4.7 Article

A conductivity study and calorimetric analysis of dried poly(sodium 4-styrene sulfonate)/poly(diallyldimethylammonium chloride) polyelectrolyte complexes

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 128, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2901048

Keywords

-

Ask authors/readers for more resources

Ionically cross-linked polyelectrolyte complexes (PECs) of anionic poly(sodium 4-styrene sulfonate) (PSS) and cationic poly(diallyldimethylammonium chloride) (PDADMAC), xPSS center dot(1-x)PDADMAC, with molar fractions x ranging from 0.30 to 0.70, were prepared and subsequently dried. The PEC samples were analyzed by differential scanning calorimetry, and the ionic conductivity sigma(dc) of the samples was measured as a function of temperature by means of impedance spectroscopy. The thermograms display an endothermic peak in the temperature range of 90-143 degrees C, which is attributed to a glass transition of the PEC. The glass transition temperature T-g has a symmetric x dependence with a minimum at x=0.50. The temperature dependence of sigma T-dc is not affected by the glass transition. The ionic conductivity of the samples before drying is three orders of magnitude larger than sigma(dc) after drying; nevertheless, their activation enthalpies are identical. Arrhenius parameters obtained from the systematic study of several PEC compositions are discussed. The ionic conductivity of the PSS-rich samples is significantly higher than sigma(dc) of PDADMAC-rich samples. This implies a relatively high Na+ mobility as compared to Cl- mobility in PEC. In contrast to the symmetric x dependence of T-g, the conductivity of PEC increases and the activation enthalpy decreases with increasing x in the investigated composition range. A strong x dependence of sigma(dc) is observed for PSS-rich PEC, which is attributed to a significant variation in the mobility of the charge carriers. (c) American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available