4.7 Article

Entropy driven key-lock assembly

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 129, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2981795

Keywords

-

Ask authors/readers for more resources

The effective interaction between a sphere with an open cavity (lock) and a spherical macroparticle (key), both immersed in a hard sphere fluid, is studied by means of Monte Carlo simulations. As a result, a two-dimensional map of the key-lock effective interaction potential is constructed, which leads to the proposal of a self-assembling mechanism: There exists trajectories through which the key-lock pair could assemble avoiding trespassing potential barriers. Hence, solely the entropic contribution can induce their self-assembling even in the absence of attractive forces. This study points out the solvent contribution within the underlying mechanisms of substrate-protein assembly/disassembly processes, which are important steps of the enzyme catalysis and protein mediated transport. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2981795]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available