4.7 Article

Effect of excess electron and one water molecule on relative stability of the canonical and zwitterionic tautomers of glycine

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 128, Issue 12, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2838910

Keywords

-

Ask authors/readers for more resources

The anionic and neutral complexes of glycine with water were studied at at the coupled cluster level of theory with single, double, and perturbative triple excitations. The most stable neutral complex has a relatively small dipole moment (1.74 D) and does not bind an electron. Other neutral complexes involve a polar conformer of canonical glycine and support dipole-bound anionic states. The most stable anion is characterized by an electron vertical detachment energy of 1576 cm(-1), in excellent agreement with the experimental result of 1573 cm(-1). The (Gly center dot H2O)(-) complex supports local minima, in which the zwitterionic glycine is stabilized by one water and one excess electron. They are, however, neither thermodynamically nor kinetically stable with respect to the dipole-bound states based on the canonical tautomers of glycine. The electron correlation contributions to excess electron binding energies are important, in particular, for nonzwitterionic complexes. Our results indicate that the condensation energies for Gly((0,-)) + H2O -> (Gly center dot H2O)((0,-)) are larger than the adiabatic electron affinity of Gly center dot H2O. The above results imply that collisions of Gly(-) with H2O might effectively remove Gly(-) from the ion distribution. This might explain why formation of Gly(-) and (Gly center dot H2O)(-) is very sensitive to source conditions. We analyzed shifts in stretching mode frequencies that develop upon formation of intra- and intermolecular hydrogen bonds and an excess electron attachment. The position of the main peak and a vibrational structure in the photoelectron spectroscopy spectrum of (Gly center dot H2O)(-) are well reproduced by our theoretical results. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available