4.7 Article

A smooth l1-norm sparseness function for orbital based linear scaling total energy minimization

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 128, Issue 6, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2828507

Keywords

-

Ask authors/readers for more resources

A smooth l(1)-norm based function to obtain a sparse representation of the orbital coefficients is introduced. This sparseness function is further parametrized with respect to unitary transformations among the occupied orbitals. Thus the function can be straightforwardly included in an optimization scheme or used on the fly during self-consistent field iterations to induce or maintain the sparsity of the orbital coefficients. As practical examples, we induce sparsity in the orbital coefficients of liquid water and bulk silicon. We also report the sparsity of the orbital coefficients of 1024 water molecules along a short Born-Oppenheimer molecular dynamics trajectory. It is observed that, after a stabilization period, the sparsity of the orbitals can be kept stable along the dynamics with small additional computational effort. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available