4.7 Article

Efficient linear-scaling calculation of response properties: Density matrix-based Laplace-transformed coupled-perturbed self-consistent field theory

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 128, Issue 22, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2940731

Keywords

-

Ask authors/readers for more resources

A density matrix-based Laplace reformulation of coupled-perturbed self-consistent field (CPSCF) theory is presented. It allows a direct, instead of iterative, solution for the integral-independent part of the density matrix-based CPSCF (D-CPSCF) equations [J. Kussmann and C. Ochsenfeld, J. Chem. Phys. 127, 054103 (2007)]. In this way, the matrix-multiplication overhead compared to molecular orbital-based solutions is reduced to a minimum, while at the same time, the linear-scaling behavior of D-CPSCF theory is preserved. The present Laplace-based equation solver is expected to be of general applicability. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available