4.7 Article

Structure of cylindrical electric double layers: A systematic study by Monte Carlo simulations and density functional theory

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 129, Issue 15, Pages -

Publisher

AIP Publishing
DOI: 10.1063/1.2992525

Keywords

-

Ask authors/readers for more resources

We present a systematic study of the structure of cylindrical double layers to envisage the distribution of small ions around a cylindrical polyion through canonical Monte Carlo simulation and density functional theory. The polyion is modeled as an infinite, rigid, and impenetrable charged cylinder surrounded by charged hard spheres of equal diameter modeled for small ions of the electrolyte. The solvent is considered as dielectric continuum. The theory is partially perturbative where the hard sphere contribution to the total excess free energy is evaluated using weighted density approximation, and the ionic interactions are calculated using quadratic Taylor expansion with respect to a uniform fluid. The system is studied over a wide range of parameters, viz., ionic concentrations, valences, and ionic sizes as well as for varying axial charge densities of the polyion. The theoretical predictions are observed to be in good agreement with that of simulation results. Some interesting phenomena relating to the width of the diffuse layer, mean electrostatic potential, and charge inversion have been observed to be dependent on different parametric conditions. (c) 2008 American Institute of Physics. [DOI: 10.1063/1.2992525]

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available