4.7 Article

Dynamic treatment of vibrational energy relaxation in a heterogeneous and fluctuating environment

Journal

JOURNAL OF CHEMICAL PHYSICS
Volume 129, Issue 13, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.2985606

Keywords

-

Funding

  1. Frankfurt Center for Scientific Computing
  2. Fonds der Chemischen Industrie

Ask authors/readers for more resources

A computational approach to describe the energy relaxation of a high-frequency vibrational mode in a fluctuating heterogeneous environment is outlined. Extending previous work [H. Fujisaki, Y. Zhang, and J. E. Straub, J. Chem. Phys. 124, 144910 (2006)], second-order time-dependent perturbation theory is employed which includes the fluctuations of the parameters in the Hamiltonian within the vibrational adiabatic approximation. This means that the time-dependent vibrational frequencies along a molecular dynamics trajectory are obtained via a partial geometry optimization of the solute with fixed solvent and a subsequent normal mode calculation. Adopting the amide I mode of N-methylacetamide in heavy water as a test problem, it is shown that the inclusion of dynamic fluctuations may significantly change the vibrational energy relaxation. In particular, it is found that relaxation occurs in two phases, because for short times (less than or similar to 200 fs) the spectral density appears continuous due to the frequency-time uncertainty relation, while at longer times the discrete nature of the bath becomes apparent. Considering the excellent agreement between theory and experiment, it is speculated if this behavior can explain the experimentally obtained biphasic relaxation the amide I mode of N-methylacetamide. (C) 2008 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available