4.7 Article

Electronic Structure Investigation and Parametrization of Biologically Relevant Iron-Sulfur Clusters

Journal

JOURNAL OF CHEMICAL INFORMATION AND MODELING
Volume 54, Issue 2, Pages 613-620

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ci400718m

Keywords

-

Funding

  1. AGAUR [2010 BP_B00238]
  2. Ministerio de Ciencia e Innovacion (MICINN) [CTQ2011-25086/BQU]
  3. DIUE of the Generalitat de Catalunya [2009SGR528]
  4. MICINN (Ministry of Science and Innovation, Spain)
  5. FEDER fund (European Fund for Regional Development) [UNGI08-4E-003]
  6. ICREA Funding Source: Custom

Ask authors/readers for more resources

The application of classical molecular dynamics simulations to the study of metalloenzymes has been hampered by the lack of suitable molecular mechanics force field parameters to treat the metal centers within standard biomolecular simulation packages. These parameters cannot be generalized, nor be easily automated, and hence should be obtained for each system separately. Here we present density functional theory calculations on [Fe2S2(SCH3)(4)](2+/+), [Fe3S4(SCH3)(3)](+/0) and [Fe4S4(SCH3)(4)](2+/+) and the derivation of parameters that are compatible with the AMBER force field. Molecular dynamics simulations performed using these parameters on respiratory Complex II of the electron transport chain showed that the reduced clusters are more stabilized by the protein environment, which leads to smaller changes in bond lengths and angles upon reduction. This effect is larger in the smaller iron sulfur cluster, [Fe2S2(SCH3)(4)](2+/+).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available