4.7 Article

Extended Template-Based Modeling and Evaluation Method Using Consensus of Binding Mode of GPCRs for Virtual Screening

Journal

JOURNAL OF CHEMICAL INFORMATION AND MODELING
Volume 54, Issue 11, Pages 3153-3161

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/ci500499j

Keywords

-

Funding

  1. Ministry of Education, Culture, Sports, Science and Technology, Japan

Ask authors/readers for more resources

G-protein-coupled receptors (GPCRs) are a pharmaceutically important protein family because they mediate numerous physiological functions. The crystal structures of several GPCR subtypes have been determined recently, encouraging efforts to apply structure-based virtual screening (SBVS) along with ligand-based virtual screening (LBVS) to improve the hit rate of active ligands from large chemical libraries. Three-dimensional models are also necessary for GPCR targets whose structures are unknown. Current challenges include the selection of structural templates from available structurally known GPCRs to use for accurate modeling and understanding the diversity of sites recognizing distinct ligands. We have developed and validated an extended template-based modeling and evaluation method for SBVS. Models were generated using a fragmental template procedure in addition to typical template-based modeling methods. The reliability of the models was evaluated using a virtual screening test with known active ligands and decoys and the consensus of the binding mode using the proteinligand interaction fingerprint (PLIF) derived from the results of docking simulations. This novel workflow was applied to three targets with known structures (human dopamine receptor 3, human histamine H1 receptor, and human delta opioid receptor) and to a target with an unknown structure (human serotonin 2A receptor). In each case, model structures having high ligand selectivity with consensus binding mode were generated.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available