4.7 Article

Receptor-based virtual ligand screening for the identification of novel CDC25 phosphatase inhibitors

Ask authors/readers for more resources

CDC25 phosphatases play critical roles in cell cycle regulation and are attractive targets for anticancer therapies. Several small non-peptide molecules are known to inhibit CDC25, but many of them appear to form a covalent bond with the enzyme or act through oxidation of the thiolate group of the catalytic cysteine. Structure-based virtual ligand screening computations were performed with FRED, Surflex, and LigandFit, a compound collection of over 310 000 druglike molecules and the crystal structure of CDC25B in order to identify novel classes of ligands. In vitro experiments carried out on a selected list of 1500 molecules led to the discovery of 99 compounds able to inhibit CDC25B activity at 100 mu M. Further docking computations were applied, allowing us to propose a binding mode for the most potent molecule (IC50 = 13 mu M). Our best compounds represent promising new classes of CDC25 inhibitors that also exhibit antiproliferative properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available