4.3 Article

Aphid Feeding Activates Expression of a Transcriptome of Oxylipin-based Defense Signals in Wheat Involved in Resistance to Herbivory

Journal

JOURNAL OF CHEMICAL ECOLOGY
Volume 36, Issue 3, Pages 260-276

Publisher

SPRINGER
DOI: 10.1007/s10886-010-9756-8

Keywords

Diuraphis noxia; Insect; Microarray; Northern blot; Oxylipin signaling; Plant defense; Real-time polymerase chain reaction (PCR); Russian wheat aphid; Triticum aestivum; Wheat

Funding

  1. Kansas Crop Improvement Association [08-151-J]
  2. National Science Foundation [DBI 0421427, EPS 0236913, MCB 0455318, DBI 0521587]
  3. Kansas Technology Enterprise Corporation
  4. K-IDeA Networks of Biomedical Research Excellence (INBRE) of National Institute of Health [P20RR16475]
  5. Kansas State University

Ask authors/readers for more resources

Damage by the Russian wheat aphid (RWA), Diuraphis noxia, significantly reduces wheat and barley yields worldwide. In compatible interactions, virulent RWA populations flourish and susceptible plants suffer extensive leaf chlorophyll loss. In incompatible interactions, RWA reproduction and population growth are significantly reduced and RWA-related chlorophyll loss in resistant plants is minor. The objectives of this study were to develop an understanding of the molecular and phytochemical bases of RWA resistance in plants containing the Dnx resistance gene. Microarray, real-time polymerase chain reaction, and phytohormone assays were conducted to identify transcriptome components unique to RWA-infested Dnx plants and susceptible (Dn0) plants, and to identify and characterize putative genes involved in Dnx plant defense responses. We found that RWA-infested Dnx plants upregulated > 180 genes related to reactive oxygen species, signaling, pathogen defense, and arthropod allelochemical and physical defense. The expression of several of these genes in RWA-infested Dnx plants increased significantly from 6- to 24-h post infestation (hpi), but their expression in Dn0 plants, when present, was delayed until 48- to 96 hpi. Concentrations of 16- and 18-carbon fatty acids, trans-methyl-12-oxophytodienoic acid, and abscisic acid were significantly greater in Dnx foliage than in Dn0 foliage after RWA infestation, suggesting that Dnx RWA defense and resistance genes may be regulated via the oxylipin pathway. These findings provide a foundation for the elucidation of the molecular basis for compatible- and incompatible plant-aphid interactions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available