4.2 Article

Fractional Walden Rule for Ionic Liquids: Examples from Recent Measurements and a Critique of the So-Called Ideal KCl Line for the Walden Plot

Journal

JOURNAL OF CHEMICAL AND ENGINEERING DATA
Volume 55, Issue 5, Pages 1784-1788

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/je900878j

Keywords

-

Ask authors/readers for more resources

Temperature-dependent conductivity, viscosity, and density of four ionic liquids (ILs), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]), 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([EMIM][NTf2]), and 1-ethyl-3-methylimidazolium dicyanamide ([EMIM][DCA]), were measured with high precision from +80 degrees C down to -35 degrees C, if possible. Fitting parameters for the Vogel-Fulcher-Tammann (VFT) equation were obtained for conductivity and viscosity data, and obtained data were analyzed with the help of the fractional Walden rule and the Walden plot. Excellent linear behavior is observed for all ILs; however, the average slope is not unity as expected for the ideal Walden rule, but 0.92 +/- 0.02. The so-called ideal KCl line that is used to compare ILs within the Walden plot is discussed, as literature data for aqueous KCl solutions show that its assumed ideality has to be modified.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available