4.6 Article

Potential use of oxygen as a metabolic biosensor in combination with T2*-weighted MRI to define the ischemic penumbra

Journal

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
Volume 28, Issue 10, Pages 1742-1753

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/jcbfm.2008.56

Keywords

diffusion-weighted imaging; MCAO; oxygen challenge; rat brain; stroke; T2*

Funding

  1. Scottish Funding Council
  2. MRC
  3. Neurosciences Foundation
  4. MRC [G0700439] Funding Source: UKRI
  5. Medical Research Council [G0700439] Funding Source: researchfish

Ask authors/readers for more resources

We describe a novel magnetic resonance imaging technique for detecting metabolism indirectly through changes in oxyhemoglobin: deoxyhemoglobin ratios and T2* signal change during 'oxygen challenge' (OC, 5 mins 100% O-2). During OC, T2* increase reflects O2 binding to deoxyhemoglobin, which is formed when metabolizing tissues take up oxygen. Here OC has been applied to identify tissue metabolism within the ischemic brain. Permanent middle cerebral artery occlusion was induced in rats. In series 1 scanning (n = 5), diffusion-weighted imaging (DWI) was performed, followed by echo-planar T2* acquired during OC and perfusion-weighted imaging (PWI, arterial spin labeling). Oxygen challenge induced a T2* signal increase of 1.8%, 3.7%, and 0.24% in the contralateral cortex, ipsilateral cortex within the PWI/DWI mismatch zone, and ischemic core, respectively. T2* and apparent diffusion coefficient (ADC) map coregistration revealed that the T2* signal increase extended into the ADC lesion (3.4%). In series 2 (n = 5), FLASH T2* and ADC maps coregistered with histology revealed a T2* signal increase of 4.9% in the histologically defined border zone (55% normal neuronalmorphology, located within the ADC lesion boundary) compared with a 0.7% increase in the cortical ischemic core (92% neuronal ischemic cell change, core ADC lesion). Oxygen challenge has potential clinical utility and, by distinguishing metabolically active and inactive tissues within hypoperfused regions, could provide a more precise assessment of penumbra.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available