4.5 Article Proceedings Paper

Amylases and bread firming - an integrated view

Journal

JOURNAL OF CEREAL SCIENCE
Volume 50, Issue 3, Pages 345-352

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jcs.2009.04.010

Keywords

Bread firming; Starch network; Amylase; Anti-staling

Ask authors/readers for more resources

Despite much research, bread crumb firming during storage and amylase anti-staling properties are still ill understood. We present a coherent view on the topic based on literature, experimental data, and food polymer science-related concepts. During bread storage, the gelatinised starch (amylopectin) network, present in soft, fresh bread, is gradually transformed into an extensive, partially crystalline, permanent amylopectin network, with amylopectin crystallites acting as junction zones. This network increasingly accounts for the bulk theological behaviour of aging bread crumb. Furthermore, as amylopectin retrogradation proceeds, moisture migration within the crumb structure occurs, and more and more water is immobilised within amylopectin crystallites. The crystalline hydrate water can no longer plasticise the different networks, which goes hand in hand with increased crumb firmness and decreased crumb resilience, due to a less flexible gluten network. The efficiency of anti-staling amylases can be related to the extent they limit the formation and the strength of the permanent amylopectin network, and the water immobilisation. Conventional alpha-amylases weaken the amylopectin network by cutting the long polymer chains connecting the crystalline regions, but have little effect on amylopectin recrystallisation. In contrast, maltogenic alpha-amylase primarily shortens the amylopectin side chains, thus hindering amylopectin recrystallisation, and the concomitant network formation and water immobilisation. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available