4.7 Article

Palmitate Induces ER Stress and Autophagy in H9c2 Cells: Implications for Apoptosis and Adiponectin Resistance

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 230, Issue 3, Pages 630-639

Publisher

WILEY
DOI: 10.1002/jcp.24781

Keywords

-

Funding

  1. Canadian Diabetes Association
  2. Career Investigator of the Heart & Stroke Foundation of Ontario
  3. Natural Sciences and Engineering Research Council of Canada (NSERC)

Ask authors/readers for more resources

The association between obesity and heart failure is well documented and recent studies have indicated that understanding the physiological role of autophagy will be of great significance. Cardiomyocyte apoptosis is one component of cardiac remodeling which leads to heart failure and in this study we used palmitate-treated H9c2 cells as an in vitro model of lipotoxicity to investigate the role of autophagy in cell death. Temporal analysis revealed that palmitate (100M) treatment induced a gradual increase of intracellular lipid accumulation as well as apoptotic cell death. Palmitate induced autophagic flux, determined via increased LC3-II formation and p62 degradation as well as by detecting reduced colocalization of GFP with RFP in cells overexpressing tandem fluorescent GFP/RFP-LC3. The increased level of autophagy indicated by these measures were confirmed using transmission electron microscopy (TEM). Upon inhibiting autophagy using bafilomycin we observed an increased level of palmitate-induced cell death assessed by Annexin V/PI staining, detection of active caspase-3 and MTT cell viability assay. Interestingly, using TEM and p-PERK or p-eIF2 detection we observed increased endoplasmic reticulum (ER) stress in response to palmitate. Autophagy was induced as an adaptive response against ER stress since it was sensitive to ER stress inhibition. Palmitate-induced ER stress also induced adiponectin resistance, assessed via AMPK phosphorylation, via reducing APPL1 expression. This effect was independent of palmitate-induced autophagy. In summary, our data indicate that palmitate induces autophagy subsequent to ER stress and that this confers a prosurvival effect against lipotoxicity-induced cell death. Palmitate-induced ER stress also led to adiponecin resistance. J. Cell. Physiol. 230: 630-639, 2015. (c) 2014 Wiley Periodicals, Inc., A Wiley Company

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available