4.7 Article

C2 and C2C12 Murine Skeletal Myoblast Models of Atrophic and Hypertrophic Potential: Relevance to Disease and Ageing?

Journal

JOURNAL OF CELLULAR PHYSIOLOGY
Volume 225, Issue 1, Pages 240-250

Publisher

WILEY
DOI: 10.1002/jcp.22252

Keywords

-

Funding

  1. Institute for Biomedical Research into Human Movement (IRM), Manchester Metropolitan University

Ask authors/readers for more resources

Reduced muscle mass and increased susceptibility to TNF-induced degradation accompany inflamed ageing and chronic diseases. Furthermore, C-2 myoblasts display diminished differentiation and increased susceptibility to TNF-alpha-induced cell death versus subcloned C2C12 cells, providing relevant models to assess: differentiation (creatine kinase), growth (protein), death (trypan-blue) and anabolic/catabolic parameters (RT-PCR) over 72 h +/- TNF-alpha (20 ng ml (1)). At 48 and 72 h, respectively, larger myotubes and significantly higher CK activity (320.26 +/- 6.82 vs. 30.71 +/- 2.5, P < 0.05; 544.94 +/- 27.7 vs. 39.4 +/- 3.37 mU mg ml(-) (1), P < 0.05), fold increases in myoD (21.45 +/- 3.12 vs. 3.97 +/- 1.76, P < 0.05; 31.07 +/- 3.1 vs. 6.82 +/- 1.93, P < 0.05) and myogenin mRNA (241.8 +/- 40 vs. 36.80 +/- 19.3, P < 0.05; 440 +/- 100.5 vs. 201.1 +/- 86, P < 0.05) were detected in C2C12 versus C-2. C2C12 showed significant increases in IGF-I mRNA (243.05 +/- 3.87 vs. 105.75 +/- 21.95, P < 0.05), reduced proliferation and significantly lower protein expression (1.21 +/- 0.28 vs. 1.79 +/- 0.29 mg ml (1), P < 0.05) at 72h versus C-2 cells. Significant temporal reductions in C2C12 IGFBP2 mRNA (28.02 +/- 15.44, 13.82 +/- 8.07, 6.92 +/- 4.37, P < 0.05) contrasted increases in C(2)s (4.31 +/- 3.31, 13.02 +/- 9.92, 82.9 +/- 58.9, P < 0.05) at 0, 48 and 72 h, respectively. TNF-alpha increased cell death in C(2)s (2.67 +/- 1.54%, 34.42 +/- 5.39%, 29.71 +/- 5.79% (0, 48, 72 h), P < 0.05), yet was without effect in C(2)C(12)s at 48 h but caused a small significant increase at 72 h (9.88 +/- 4.02% (TNF-alpha) vs. 6.17 +/- 0.749% (DM), 72 h). TNF-alpha and TNFRI mRNA were unchanged: however, larger reductions in IGF-I (8.2- and 7.5-fold vs. 4.5- and 4.1-fold (48, 72 h)), IGF-IR (2-fold vs. no-significant reduction (72 h)) and IGFBP5 (3.24 vs. 1.38 (48 h) and 2.21 vs. 1.71(72 h), P < 0.05) mRNA were observed in C-2 versus C2C12 with TNF-alpha. This investigation provides insight into regulators of altered basal hypertrophy and TNF-induced atrophy, providing a model for future investigation into therapeutic initiatives for ageing/wasting disorders. J. Cell. Physiol. 225: 240-250, 2010. (C) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available